Year : 2011  |  Volume : 2  |  Issue : 2  |  Page : 111-114

Exploring the potential of polacrilin potassium as a novel superdisintegrant in microcrystalline cellulose based pellets prepared by extrusion-spheronization

Department of Pharmaceutics, B. V. Patel PERD Centre, Sarkhej-Gandhinagar Highway,Thaltej, Ahmedabad, Gujarat, India

Correspondence Address:
Amita K Joshi
Department of Pharmaceutics, B. V. Patel PERD Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad-380054, Gujarat
Login to access the Email id

Source of Support: Department of Biotechnology, Government of India, Conflict of Interest: None

DOI: 10.4103/2229-5186.82972

Rights and Permissions

Polacrilin potassium (PP), an ion exchange resin, was used as a superdisintegrant to improve the dissolution of rifampicin, from microcrystalline cellulose (MCC) based pellets prepared by extrusion-spheronization. Production of fast release pellets by extrusion-spheronization using MCC is a complicated process. In the present study, pellets were prepared containing 50% w/w rifampicin (BCS class II drug) and 40% w/w MCC as extrusion-spheronization aid. Different levels of PP and lactose ratio investigated were 0:10, 2:8, 4:6, 6:4, 8:2, and 10:0. Pellets were evaluated for yield, size, size distribution, shape, porosity, friability, residual moisture, and dissolution efficiency (DE) at 30 minutes. Incorporation of this novel superdisintegrant had no adverse effect on the mechanical and micromeritic characteristics of pellets. All the batches of pellets showed high yields', ~90%; narrow particle size distribution; aspect ratio, 1.0-1.1; friability, <1%; and porosity, 45.51-49.84%. Dissolution profiles were compared using model-independent approaches; DE and similarity factor, f 2 . Addition of Polacrilin results in significant improvement in the DE of rifampicin. The dissolution profiles were significantly different from the dissolution profile of pellets formulated without PP. This preliminary study indicates that PP can serve as an effective superdisintegrant in MCC pellets prepared by extrusion-spheronization.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded300    
    Comments [Add]    

Recommend this journal